top of page
Table of Values
00:00 / 00:18
Once you solved your y-intercept, x-intercept(s), and vertex you will need to create a table of values.
As we stated before, a parabola is reflective about the vertex (the points are the same distance on both sides).
Let's look at an example:
Let's say we are given the equation.
![Screen Shot 2020-05-12 at 2.58.06 PM.png](https://static.wixstatic.com/media/cb222d_9acac02fafc4441da67b717acaa75298~mv2.png/v1/fill/w_807,h_502,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%202_58_06%20PM.png)
Based on the previous pages we need to identify and evaluate the y-intercept, x-intercept(s) and the vertex.
00:00 / 00:17
y-intercept
Since our equation is in standard form our y-intercept will be the c value.
![Screen Shot 2020-05-12 at 2.58.06 PM.png](https://static.wixstatic.com/media/cb222d_9acac02fafc4441da67b717acaa75298~mv2.png/v1/fill/w_803,h_502,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%202_58_06%20PM.png)
This means that 6 is our y-intercept.
00:00 / 00:17
x-intercept(s)
We need to use the quadratic formula on the standard equation.
![Screen Shot 2020-05-12 at 2.58.06 PM.png](https://static.wixstatic.com/media/cb222d_9acac02fafc4441da67b717acaa75298~mv2.png/v1/fill/w_803,h_502,al_c,q_90,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%202_58_06%20PM.png)
![download.png](https://static.wixstatic.com/media/cb222d_2bc71cc5313e48d8add45a9386ec7bb7~mv2.png/v1/fill/w_234,h_131,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/download.png)
![Screen Shot 2020-05-12 at 3.22.45 PM.png](https://static.wixstatic.com/media/cb222d_ba9bbe08fb4240b9968e5a7a67dc1b93~mv2.png/v1/fill/w_570,h_356,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%203_22_45%20PM.png)
![Screen Shot 2020-05-12 at 3.22.52 PM.png](https://static.wixstatic.com/media/cb222d_3302bb47313d4383be8d5c4d2ece89b0~mv2.png/v1/fill/w_590,h_369,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%203_22_52%20PM.png)
x = 1
​
x=2
Vertex
We need to identify if our vertex is a max or min value. Since our "a" value is positive we have a min.
We need to use our vertex formula:
![Screen Shot 2020-05-10 at 2.50.16 PM.png](https://static.wixstatic.com/media/cb222d_9689c11ef5b04cdf87e481db6a113f29~mv2.png/v1/fill/w_728,h_455,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-10%20at%202_50_16%20PM.png)
![Screen Shot 2020-05-10 at 2.50.16 PM.png](https://static.wixstatic.com/media/cb222d_9689c11ef5b04cdf87e481db6a113f29~mv2.png/v1/fill/w_728,h_455,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-10%20at%202_50_16%20PM.png)
x = 1.5
![Screen Shot 2020-05-12 at 3.33.12 PM.png](https://static.wixstatic.com/media/cb222d_4845807e61a142fc9614f6c8455bbce3~mv2.png/v1/crop/x_0,y_0,w_1280,h_627/fill/w_600,h_294,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%203_33_12%20PM.png)
Substitute x
![Screen Shot 2020-05-12 at 3.39.38 PM.png](https://static.wixstatic.com/media/cb222d_4786dd4791314212a025f0bb9f1f49fd~mv2.png/v1/fill/w_434,h_271,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%203_39_38%20PM.png)
y = -7.5
Vertex formula
Substitute values
Simplify
Simplify
Now that we have our y-intercept, x-intercepts, and vertex we can plug them into our table.
00:00 / 00:45
00:00 / 00:57
00:00 / 00:27
X-Values
Y-Values
1
1.5
2
0
-7.5
0
0
6
Missing Value
Missing Value
Table of Values
00:00 / 00:33
Notice the missing value in the table above
We need to fill in the missing information.
Since we solved for the vertex and our intercepts, it gave us a frame of reference for our table.
The rule of thumb when deciding what values to take for your table is a value less then and greater then your x-intercepts.
This allows you to plot values on your coordinate grid to make your parabola more accurate.
Let's take the value
x=3
into our table.
00:00 / 00:21
Let's plug in 3 in for x to see how our table looks
x = 3
![Screen Shot 2020-05-12 at 9.19.59 PM.png](https://static.wixstatic.com/media/cb222d_9013d895018c4344ac5eb47a2bedca99~mv2.png/v1/crop/x_100,y_245,w_426,h_127/fill/w_235,h_70,al_c,q_85,usm_0.66_1.00_0.01,enc_avif,quality_auto/Screen%20Shot%202020-05-12%20at%209_19_59%20PM.png)
y = 6
00:00 / 00:09
Now we can plot the points from the table. When we do this, we can create an accurate parabola for our graph.
00:00 / 00:06
The video below will help you on how to create a table of values:
00:00 / 00:18
Let's try an activity!
Below are two button to two different activities. One button will take you to a Desmos site, where you will need to fill in different table values. The other is a different Wix site asking you various questions about table of values.
*Once you finish the Desmos activity close out of the Desmos window
Class Code:
K8HZVF
00:00 / 00:06
Try the assessment button to see what you know about Table of Values.
00:00 / 00:15
If you did well on the assessment click the button to the right to go to the next objective.
![images.png](https://static.wixstatic.com/media/cb222d_1ee4698a273844158bc66c80f75fae44~mv2.png/v1/fill/w_313,h_243,al_c,lg_1,q_85,enc_avif,quality_auto/images.png)
![18db55fd9bbc324088102d13287c3555.gif](https://static.wixstatic.com/media/cb222d_413a209785e94c89a89175af7a456f4f~mv2.gif/v1/fill/w_500,h_270,al_c,pstr/18db55fd9bbc324088102d13287c3555_gif.gif)
bottom of page